
1.  Introduction
Biomass burning (BB) is one of the most significant emission sources of carbon-containing aerosols and trace 
gases in the atmosphere (Akagi et al., 2011). The smoke constituents greatly affect atmospheric composition, opti-
cal property, carbon storage, and air quality, imposing severe risks to public health and property (Gan et al., 2017; 
Lassman et al., 2017; Liu et al., 2015; Reid et al., 2016). In the western U.S., wildfires have seen increased sever-
ity and frequency over the last decades (Westerling, 2006; Williams et al., 2019) owing primarily to the warming 
climate and consequent fuel drying (Abatzoglou & Williams, 2016; Williams et al., 2019), thus there has been an 
imperative need of improving our understanding of wildfire burning dynamics and the environmental impacts.

Wildfire smoke plumes can spread over a wide range of spatiotemporal scales, which is strongly associated with 
plume rise, or plume injection. The determinant mechanism for the initial rapid ascent of smoke plumes lies on 
updrafts above fires triggered by the heat and buoyancy generated during fuel combustion (Freitas et al., 2007; 
Torres et  al.,  2020). Plume injection determines the altitudes at which the fire emissions are entrained into 
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the atmosphere. Under favorable meteorological conditions, for example, with formations of deep convection 
clouds known as pyrocumulonimbus (pyroCb; Peterson et al., 2021) and cyclonic systems (Magaritz-Ronen & 
Raveh-Rubin, 2021), strong fires can release plumes into the upper troposphere (Labonne et al., 2007; Val Martin 
et al., 2010) and the lower stratosphere in extreme cases (Das et al., 2021; Gettelman et al., 2011; Magaritz-Ronen 
& Raveh-Rubin, 2021; Peterson et al., 2018, 2021), where the smoke can persist for much longer times and travel 
over widespread areas, due to the faster wind speed, weaker turbulence mixing, less efficient removal processes, 
and thus longer species lifetime at high altitudes than within the PBL (Ansmann et al., 2018; Dirksen et al., 2009). 
Therefore, the vertical distribution of fire emissions, and the consequent smoke plumes, play a crucial role in 
determining surface air pollutant exposure (Cheeseman et al., 2020; Wang et al., 2006), as well as the downwind 
radiative forcing of plume aerosols over long distances (Das et al., 2021; Magaritz-Ronen & Raveh-Rubin, 2021) 
due to the different transport, turbulence conditions, and chemical processes at different vertical levels.

Despite the significance, the plume rise process is still challenging to reproduce in atmospheric chemical transport 
models (Baker et al., 2016; Paugam et al., 2016; Thapa et al., 2022; Val Martin et al., 2012; Ye et al., 2021). The 
vertical profile of smoke emissions can be determined according to two terms: the plume injection height, and 
the assumption to allocate the total column emissions. For the plume injection height, a variety of methodologies 
have been proposed for estimating it, such as: (a) prescribed region-dependent injection height based on observa-
tions (Davison, 2004; Lavoué et al., 2000; Liousse et al., 1996), (b) empirical-statistical approaches adapted from 
formulations of stacks injections (Briggs, 1975; Pavlovic et al., 2016; Raffuse et al., 2012), (c) semi-empirical 
formula using key inputs of fire radiative power (FRP), PBL height, and atmospheric stability in the free tropo-
sphere following the analogy to the convective Available Potential Energy formulations (Sofiev et al., 2012), and 
(d) physical-process-based approaches that explicitly consider buoyancy, microphysics and entrainment (Freitas 
et al., 2007, 2010), and fire-energy thermodynamics (Anderson et al., 2011; Chen et al., 2019). Evaluation studies 
have suggested limitations of these approaches and large discrepancies when compared against remote sensing 
data, for example, the plume height from the Multi-angle Imaging SpectroRadiometer and Cloud-Aerosol LiDAR 
with Orthogonal Polarization (CALIOP). For example, the Briggs method shows limited applicability for wild-
fires (Raffuse et al., 2012; Sofiev et al., 2012). Large uncertainties and discrepancies are present in predicted 
plume heights by different kinds of plume rise models for an individual fire event, based on a comparison against 
the airborne lidar data (Ye et al., 2021). Challenges exist because plume injection behavior is dependent on both 
the meteorological conditions and fire characteristics that are highly dynamic and heterogeneous.

Compared to the plume injection height, the observational constraints on the vertical allocation of smoke emis-
sions are even less understood. Many models homogeneously distribute all of the fire emissions from the ground 
level to a prescribed plume injection height (e.g., Davison, 2004; Lavoué et al., 2000; Liousse et al., 1996). Sofiev 
et al. (2013) uniformly allocate the emissions inside each plume over one third to the full plume top height. A 
more sophisticated method (Freitas et  al.,  2007) also use a uniform distribution, but it's applied only for the 
flaming part of the total emissions, with the partition of flaming verses smoldering emissions assumed by fuel 
category (see Section 2.2). The allocation of fire emissions at vertical levels, especially below vs. above the PBL 
height, has been highlighted as a potential source of uncertainty of smoke forecasting systems for the representa-
tion of surface pollution and lofted smoke undergoing long-range transport (Ye et al., 2021). Therefore, in this 
work, we use airborne lidar data to objectively constrain the vertical allocation of fire emissions using the inverse 
modeling approach.

Previous evaluations of plume rise models predominately focus on plume injection heights (e.g., Raffuse 
et al., 2012; Sofiev et al., 2012, 2013; Thapa et al., 2022; Val Martin et al., 2012), while the vertical allocation 
of injected smoke constituents has not been investigated. These investigations are hindered by both the absence 
of accurate key input parameters driving the plume rise schemes and the lack of observations of smoke plume 
structures. Lidar observations are unique with their ability to resolve the vertical layering of atmospheric aero-
sols. CALIOP is a widely used spaceborne lidar (Winker et al., 2009), which can detect aerosol layers with high 
precision, but have limited spatial sampling due to the narrow swath and long revisit cycle. In contrast, airborne 
lidars provide measurements through specific smoke plumes of interest with exceptional temporal and spatial 
resolutions. The NASA Langley Research Center (LaRC) airborne Differential Absorption and High Spectral 
Resolution Lidar high spectral resolution lidar (DIAL-HSRL; Hair et al., 2018) has been providing measure-
ments suitable for characterizing the structure of aerosol layers over recent decades, which are used in many 
perspectives, for example, the evaluations of modeled wildfire plumes (Saide et al., 2015; Ye et al., 2021), aerosol 
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layer structures (Fast et al., 2016), and the quantification of smoke emissions (Stockwell et al., 2022; Wiggins 
et al., 2021).

In this work, we present an inverse modeling framework to constrain the wildfire smoke emissions by exploiting 
the observations from DIAL-HSRL deployed onboard the DC-8 aircraft, during the recent Fire Influence on 
Regional to Global Environments and Air Quality (FIREX-AQ) field campaign (https://csl.noaa.gov/projects/
firex-aq/) in the summer of 2019. The inversion methodology is configured with the capability of resolving the 
vertical and temporal evolution of fire emissions. Simulations are implemented for three individual fires that are 
comprehensively sampled by the scientific flights during FIREX-AQ and exhibited free-tropospheric injections, 
based on a separate study by our team investigating the ability of the model to predict the injection behavior (i.e., 
within the PBL or into the free-troposphere; Thapa et al., 2022). We investigate the plume injection allocation 
with a particular focus on the fraction of smoke getting injected into the free troposphere, along with the assess-
ment of the impacts of constrained vertical emission allocations on the model representation of downwind smoke 
distributions. Implications for future improvement of the plume rise scheme are discussed.

2.  Fire Events, Data, and Methods
2.1.  Fire Events and Modeling

We focus on three fire events, including the Shady, Tucker, and Williams Flats fires, that were sampled during 
the western U.S. portion of the FIREX-AQ field campaign. These western fires as compared to the Midwestern 
U.S. agriculture fires are selected, because they exhibit smoke plume injections into the free troposphere at least 
for one of the flight overpasses, based on a study thoroughly evaluating the plume injection behavior for all the 
fire events observed during FIREX-AQ (Thapa et al., 2022). The specific dates and fire locations selected for 
analyses are shown in Table 1, along with the daily burned areas based on the Fuel2Fire data (see more details 
in Section 2.2). These fire events are mainly fueled by forest, grasslands, shrublands, and mixed vegetations. 
The processing of their emissions and fuel vegetation coverage is described in Section 2.2. We note that all fires 
that were sampled by FIREX-AQ and are suitable for inversion have been included in this work. For the other 
fire events also exhibiting injections above the PBL, they are excluded because of insufficient flight sampling 
with little coverage through the plume, or complex plume structures due to mountainous terrain or significantly 
different advection directions below and above the PBL, which prevent the inversion methodology to be feasible.

The transport of gaseous and particulate species emitted from the fire sources is modeled using the Weather 
Research and Forecast with Chemistry model (WRF-Chem) v3.6.1 (Grell et al., 2005; Skamarock et al., 2008). 
This system was used in FIREX-AQ to inform air quality forecasting and flight planning (Ye et al., 2021), as 
well as in other field campaigns (Redemann et al., 2021). Instead of the forecasting mode implemented by Ye 
et al. (2021), we run the model retrospectively. The simulation domain is set with 4 km horizontal resolution 
and grid dimensions of 280 × 220 for the Williams Flats and Shady fires, and 360 × 360 for the Tucker fire. 
For the spin-up time, the model is initialized 36 hr ahead of 00:00 UTC on the day of sampling over the fresh 
smoke plume for each case. The meteorological initial and boundary conditions are derived from the 12 km 
North American Model Non-hydrostatic Multiscale Model (Janjic & Gall,  2012). The model uses a simpli-
fied aerosol-aware microphysics scheme (Thompson & Eidhammer, 2014) to reduce computational costs but 
gives comparable results (Saide et  al.,  2016) with full-chemistry simulations for smoke events. Specifically, 
two categories of aerosols are considered, that is, water and ice friendly aerosols, which are non-reactive and 
only undergo wet deposition. Smoke aerosols are considered to be fully contained in the water friendly aerosols. 
Aerosol initial and boundary conditions are obtained from monthly climatological fields derived by Thompson 
and Eidhammer (2014). Note that for the Williams Flats fire on 7 August, the initial chemical conditions are 
updated using the simulation results of the earlier case for the same fire (3 August), to consider the impact of 
aged smoke plumes released on previous days. Ambient aerosol extinction and aerosol optical depth (AOD; at 
550 nm) are computed based on the two categories of aerosol tracers using the relative humidity (RH)-dependent 
mass extinction efficiencies to consider aerosol hygroscopic growth. Dry extinction is computed at RH of 20%, 
which is used to estimate PM2.5 concentrations by assuming the mass extinction efficiency of 3.5 m 2 g −1, which 
is in the range of observations downwind of wildfires (Kleinman et al., 2020). Note that as the extinction in the 
model is diagnosed at 550 nm, it is converted to 532 nm for consistency with lidar measurements by assuming 
the Ångström Exponent of 1.89.

https://csl.noaa.gov/projects/firex-aq/
https://csl.noaa.gov/projects/firex-aq/
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2.2.  BB Emissions

The daily total BB smoke emissions are obtained from the Quick Fire Emission Data Set (QFED) v2.5 (Darmenov 
& da Silva, 2013) at 0.1° spatial grid resolution. QFED emissions are developed using FRP observations from 
polar-orbiting satellites and FRP-to-emission coefficients adjusted to improve modeling agreement with AOD 
estimates. The QFED data is selected since the FRP-based emission estimates show skillful performance in 
smoke forecasts intercomparison for AOD, compared with hotspot-based emission estimates (Ye et al., 2021). As 
we use aerosol extinction to constrain the emissions, FRP-based emissions are expected to provide better prior 
emission estimates and downwind aerosol distributions.

Given that QFED data only provides daily emissions at a spatial resolution ∼three times coarser than the model 
grid resolution (4 km), temporal and spatial redistributions are implemented to convert the emission per species 
hourly and onto the model grid. The redistributions of fire emissions are described in Section 2.2.1, followed by 
details about vegetation, fire size, and the default representation of plume injection in the model.

2.2.1.  Spatial and Temporal Redistribution of Fire Emissions

For each fire event, we use the daily burned area employed in the Fuel2Fire total carbon emission inventory (Soja 
et al., 2004) to spatially allocate the fire source. Fuel2Fire is developed specifically for the FIREX-AQ fire events, 
and the data is publicly available on the FIREX-AQ data archive under the analysis tab (https://www-air.larc.nasa.
gov/cgi-bin/ArcView/firexaq?ANALYSIS=1#SOJA.AMBER/). Fuel2Fire data has been used to intercompare 
with and validate fire emissions derived from other methods (Stockwell et al., 2022; Wiggins et al., 2021). The 
daily burned area is derived using a combination of satellite active fire detections from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite. Active fire pixels from 
these products are selected to best match ground-verified interagency situational reports from fire management 
teams, as well as Geospatial Multi-Agency Coordination (GeoMAC) fire perimeters (Wiggins et al., 2021). The 
daily QFED total emissions are spatially reallocated according to the re-mapped burned area onto the model grid. 
An example for the spatial re-distribution is illustrated in Figure S1 in Supporting Information S1.

In addition to the spatial redistribution, the gridded emissions need to be converted to hourly emissions by 
applying diurnal factors. However, the hourly distribution represented by the commonly used temporal patterns 
prescribed in smoke and air quality models can often differ from actual fire behavior (Ye et al., 2021). Thus, 
we temporally re-distribute the daily emissions using hourly diurnal patterns obtained also from the Fuel2Fire 
data, which are estimated using the FRP from geostationary satellite sensors, that is, the Advanced Baseline 
Instruments on both Geostationary Operational Environmental Satellites −16 and −17 (Schmidt, 2019; Schmidt 
et al., 2013), available at every 5 min and nominal spatial resolution of 2 km at nadir (Wiggins et al., 2021). A 
comparison of the emission time series for the Williams Flats fire before and after the temporal redistribution is 
shown in Figure S1 in Supporting Information S1.

The emission redistribution method combines the capability of polar-orbiting and geostationary satellites and 
provides better information on the spatial and temporal distribution of fire emissions, compared to using the 
original QFED footprints and the prescribed diurnal variation factors that are generally used in air quality models 
(Ye et al., 2021). Note that for the fires other than the selected events within the model domain, their diurnal 
emissions at the model grid are obtained using the processor tool “fire_emiss” provided by the Atmospheric 
Chemistry Observations and Modeling Lab (ACOM) of National Center for Atmospheric Research (NCAR).

2.2.2.  Fuel Vegetation and Fire Size

The fuel vegetation type and instantaneous fire size are also important inputs for the plume rise scheme. For 
the simulations, the vegetation cover areas and their fractions for each of the four fuel vegetation types are 
used (Table 1), namely: tropical forest (TF), extratropical forest, savanna (SV), and grassland (GR), which are 
derived per horizontal model grid cell by using the “fire_emiss” tool, implementing a simplified version of the 
MODIS Collection 5 Land Cover Type product (Wiedinmyer et al., 2011). These four fuel types are identical 
with what are adopted by the QFED data, and they are grouped based on the more detailed MODIS International 
Geosphere-Biosphere Program (IGBP) classifications (Darmenov & da Silva, 2013). The main fuel category is in 
consistency with the classification reported by Wiggins et al. (2020). For comparison, the fractions of fuel types 
based on the 30 m resolution Fuels Characteristics and Classification System data for 2014 (Ottmar et al., 2007) 
within the daily burned area, as used by the Fuel2Fire emission inventory (Soja et al., 2004), are also listed in 

https://www-air.larc.nasa.gov/cgi-bin/ArcView/firexaq?ANALYSIS=1#SOJA.AMBER/
https://www-air.larc.nasa.gov/cgi-bin/ArcView/firexaq?ANALYSIS=1#SOJA.AMBER/
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Table 1. Note that shrubland is categorized as savanna according to the mapping of IGBP classification to the four 
fuel types (Darmenov & da Silva, 2013). Although the simplified fuel categories lead to less specific biomass 
information, these types represent the generic vegetation types for which emission factors are reported in the 
literature, and they are consistent with those adopted by the plume rise scheme in WRF-Chem (Section 2.2.3). 
Therefore, these grouped fuel types are used in the following analysis. The instantaneous fire size is assumed to 
be 0.25 km 2 per grid cell and per fuel category for which the fire emissions are active (Freitas et al., 2007).

2.2.3.  Plume Rise in WRF-Chem

To parameterize plume rise which is a sub-grid process, the online coupled 1-D plume rise model in WRF-Chem 
(Grell et al., 2011) based on the methodology provided in Freitas et al. (2007, 2010) (referred to as Freitas scheme 
hereinafter) is used, which is the default scheme in the WRF-Chem model. The Freitas scheme separates emis-
sions as smoldering and flaming. In the default implementation used here, the grid column total emissions are 
equally split (50% vs. 50%) between smoldering and flaming. It should be noted that this assumption is different 
than what is used in the original formulation (Freitas et al., 2007), where the fraction of flaming emissions is 
dependent on fuel type (45%, 75%, and 97% for forest, woody savanna, and grassland, respectively). For the verti-
cal allocation, smoldering emissions are placed in the first model level, while flaming emissions are uniformly 
distributed between the lower and upper injection height bounds derived using the 1-D cloud resolving model 
embedded in the host model (WRF-Chem), for each fuel category with prescribed combustion heat flux lower 
and upper limits. For grassland, only the upper bound of heat flux is provided, and the lower bound of the injec-
tion height is fixed to the third model level (Freitas et al., 2007).

These spatiotemporal configurations of smoke emissions represent the best available a priori information of the 
fire source, which is used as base emissions input into the model, and the simulation results with these settings 
are referred to as the “Base” run accordingly in the following sections.

2.3.  Observations

2.3.1.  DIAL-HSRL

The inversion system assimilates observations collected from the airborne DIAL-HSRL (Hair et al., 2008, 2018) 
onboard the National Aeronautics and Space Administration (NASA) DC-8 aircraft during the FIREX-AQ field 
campaign. The flight track transects sampling the smoke plume when overpassing the plume axis and scanning 
along transverse legs are selected (Table 1 and Figure S2 in Supporting Information S1). DIAL-HSRL consists of 
dual nadir/zenith pointing lidar to characterize the full vertical distribution of aerosols and their optical properties 
along the flight track. The retrieval data includes aerosol backscatter (532 and 1,064 nm) and aerosol extinction 
profiles (532 nm) generated at 10 s temporal and 30 m vertical resolution.

The extinction (532 nm) profiles can directly provide constraints on fire emissions, which can characterize smoke 
aerosol loading through the column. However, because the DIAL-HSRL extinction measurement requires a large 
standoff distance from the aircraft (0.75–1 km) in both directions due to the telescope geometrical overlap, the 
availability of the extinction data is limited when the aircraft flies directly within the smoke plume (Figure 1) as 
was the case most of the time. By contrast, the backscatter coefficient does not have this limitation. Therefore, 
we used the backscatter observations to estimate extinction. First, the small backscatter profile gaps (∼100 m) 
adjacent to the flight height are filled in by linear interpolation. Then the average lidar ratio (i.e., extinction/
backscatter) is derived for each flight track segment between flight turns (e.g., Figure S3 in Supporting Informa-
tion S1) using the mean extinction and backscatter profiles. The average lidar ratio weighted by aerosol extinction 
is used for a better representation for smoke aerosol. Lidar ratio is an intensive parameter that does not depend 
on the aerosol number concentration and only depends on the particle composition and microphysical properties, 
varying less than 10%–15% along each plume. Thus, we calculate the extinction profiles by multiplying the 
backscatter by the average lidar ratio. The calculated extinction results exhibit an overall good agreement with the 
direct extinction measurements (Figure 1), with the overall mean bias (MB) ranging from 1.50 to 9.75 Mm −1 and 
correlation coefficient of 0.83–0.91 for the flights included here (see the comparisons in Figure S4 in Supporting 
Information S1). To isolate the aerosol signal contributed by the fire, smoke aerosol extinction enhancement 
(smoke EXT532) profiles are derived by subtracting a background profile represented by the average extinction 
profile taken upwind of the fire location for each plume analyzed. The extracted smoke EXT532 are averaged 
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for each set of profiles matched to the same model grid, which are then assimilated in the inversion system 
(Section 2.4).

In addition to the lidar measurements over the fresh plumes that are included into the inversions, flight sampling 
was implemented over the transported smoke plumes originating from the fire cases being constrained, which 
allows us to independently evaluate the modeled smoke based on the inversion results. For this purpose and 
depending on data availability, we include three flight track subsets for Tucker fire (21:20–22:43 UTC, 30 July) 
and Williams Flats fire (21:44–22:40 UTC, 8 August; 00:09–00:36 UTC, 9 August) for the evaluation of modeled 
smoke plumes (Section 3.3).

2.3.2.  MODIS MAIAC AOD

Satellite and surface in situ observations (see Section 2.3.3) are used to examine downwind air quality and vali-
date the simulations driven by emissions based on the inversion results. The retrievals of AOD at 550 nm from 
MODIS using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm (MCD19A2, 
Version 6; Lyapustin & Wang,  2018; Lyapustin et  al.,  2018) provides evidence of the spatial distribution of 
smoke. The MAIAC algorithm uses both Terra and Aqua satellite data to provide AOD at 1 km pixel resolution 
(https://lpdaac.usgs.gov/products/mcd19a2v006/). Since the AOD is retrieved from visible band measurements, 
only daytime data are available. The AOD accuracy is reported as  ±  (0.05%  +  10%) in a global validation 
(Lyapustin et al., 2018). For post-processing, the data are filtered according to the quality assessment flags in 
a similar way as implemented by Ye et al.  (2021), keeping the retrievals with cloud masks indicating “clear” 
or “possibly cloudy” and adjacency flags of “clear” or “adjacent to a single cloudy pixel”. The filtered tiles of 
retrievals are concatenated and remapped onto a 0.1°-resolution grid at observation times rounded to full hours.

2.3.3.  Ground-Based Measurements

AErosol RObotic NETwork (AERONET) Version 3, Level 2.0 (Giles et al., 2019) AOD retrievals at the Rimrock 
site allows for the evaluation of temporal evolution of smoke loading at the specific location. The AERONET 

Figure 1.  Aerosol extinction (532 nm) measured by Differential Absorption and High Spectral Resolution Lidar high spectral resolution lidar (DIAL-HSRL; upper 
panel) and calculated extinction by multiplying the observed backscatter by lidar ratio (lower panel, see Section 2.3 for the method) along a portion of flight track over 
the Williams Flats fire on 7 August 2019.

https://lpdaac.usgs.gov/products/mcd19a2v006/
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AOD at 500 nm is converted to 550 nm using the Ångström exponent retrieved for 440–675 nm, for consistency 
with the wavelength of the MODIS MAIAC AOD data and modeled AOD. In addition, hourly surface obser-
vations of PM2.5 mass concentrations are used, which are collected from the AirNow (https://www.airnow.gov/) 
network and accessed from the OpenAQ Platform (https://openaq.org). The AirNow data has been compared 
with the U.S. EPA's Air Data (https://www.epa.gov/outdoor-air-quality-data) and confirmed their consistency 
(Ye et al., 2021).

2.4.  Inversion Methodology

A recent study derived smoke emissions by integrating DIAL-HSRL over the whole column (Wiggins et al., 2021). 
Thus, we presumed that a similar approach could be used to derive the injection fraction by vertically integrating 
the smoke loading below and above the mixed layer. Multiple challenges were encountered that include: (a) due 
to attenuation of the lidar signal, there are missing retrievals that prevent us from accurately estimating the total 
smoke load, (b) wind speeds in the mixed layer are generally much slower than in the free-troposphere (due to 
surface roughness) and thus smoke below and above the mixed layer in an individual column does not correspond 
to the same time of emission, and (c) the plume age of boundary layer smoke is challenging to estimate owing 
to the strong turbulent and convective mixing. Thus, we developed an inverse modeling approach to derive the 
vertically resolved emissions which can be used to estimate the injected smoke fraction above the PBL.

To inversely estimate smoke emissions, forward simulations with the WRF-Chem model are performed to quan-
titatively construct the connections between smoke emissions and downwind smoke aerosol extinction, similar to 
the methodology proposed by Saide et al. (2015) based on the Bayesian inversion theory (Brasseur & Jacob, 2017). 
Instead of the hourly passive tracers employed by Saide et al. (2015), in this work we use multiple tracers per 
hour to track the transport and dispersion of smoke CO released during each hour and from different vertical 
levels, as shown by the schematic plot in Figure 2. To reduce computational cost, rather than using the original 
model layers, we designate the layers of interest with grouped layers from the first to the 32nd model layers, 
approximately covering up to 8.5 km above the ground level. Emissions from a period of interest over 11 hr and 
within 13 grouped layers are tracked separately, resulting 143 tracers. Another two tracers are tagged with smoke 
emissions before the period of interest from the first model layer and all the layers above, respectively. One more 
tracer is tagged to emissions after the period of interest and from all the other fires. One hundred forty-six tracers 
are used in total. The tracers are sampled at the observation time (rounded to full hours), column locations, and 

Figure 2.  Schematic diagram (left) of the fire smoke tracers set to track emitted species in each hour and from each grouped layer. The corresponding model layer(s) 
belonging to each grouped layer are highlighted in different colors. The time step (t) represents the hour of emissions. The Flow chart (right) shows framework of 
the inversion system used to estimate smoke emissions by assimilating the Differential Absorption and High Spectral Resolution Lidar high spectral resolution lidar 
(DIAL-HSRL) data.

https://www.airnow.gov/
https://openaq.org
https://www.epa.gov/outdoor-air-quality-data
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heights to construct the Jacobian matrix, which represents the sensitivity of downwind smoke aerosol extinction 
to the emissions. These emissions are not distributed vertically following the Freitas parameterization to make 
results independent of this approach. Instead, the total emissions from each hour during the period of interest are 
uniformly distributed vertically through the 13 grouped layers, which is used as the first-guess emissions. This 
allows the tracking of the possible contributions from all layers of interest and allows for constraining the height 
of plume injection. This distribution is applied for all chemical species emitted. Examples of the first-guess emis-
sions and the normalized emission strength by time and height for the four cases are presented in Figure S5 in 
Supporting Information S1. The 11 hr period of interest is selected based on observation data availability. For the 
four sampling dates (Table 1), the periods of interest are 17:00 UTC 25 July to 03:00 UTC 26 July, 18:00 UTC 29 
July to 04:00 UTC 30 July, 16:00 UTC 3 August to 02:00 UTC 4 August, and 17:00 UTC 7 August to 03:00 UTC 
8 August, respectively. The tracer emissions before the period of interest follows the Base run with the plume rise 
parameterized using the Freitas scheme.

The diagram of data flow of the inversion system is shown in Figure 2. For each fire event and sampling day, four 
simulations are performed, including: (a) base run with the emissions and Freitas plume rise scheme as detailed 
in Section 2.2, (b) tracer run with emissions temporally and vertically tracked, (c) no-fire run with fire emissions 
turned off, and (d) “Analysis” run with constrained emissions. The difference in results from runs (b) and (c) are 
used to compute the derivatives (H), which represents the sensitivity of the smoke plume aerosol extinctions per 
observation time/location to fire emissions from each vertical level and each hour. As the tracer run represents 
results with unit scaling factors, the finite difference derivative can be calculated as:

H𝑖𝑖,𝑘𝑘 =
𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝑘𝑘

=
𝑦𝑦𝑖𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑖

𝑆𝑆𝑘𝑘𝑘𝑘𝑘 − 𝑆𝑆𝑘𝑘𝑘𝑘𝑘

= (Δ𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡)𝑖𝑖𝑖𝑖𝑖 ⋅ 𝛼𝛼𝑖𝑖� (1)

where 𝐴𝐴 H𝑖𝑖,𝑘𝑘 is a component of the Jacobian matrix, i represents each observation time/location, k represents the 
emission tracer index ranging from 1 to Nf = 146, y is the aerosol extinction, Sk is the scaling factor, ΔCOtr is 
the CO tracer concentration increment due to fire emissions. The subscripts b and p stand for the no-fire run 
and the  tracer run. αi is used to convert the CO sensitivity to extinction sensitivity, which is derived as follows 
(assuming proportional contribution of smoke CO and aerosol extinction):

𝛼𝛼𝑖𝑖 =
𝑦𝑦𝑖𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑖

∑𝑁𝑁𝑓𝑓

𝑘𝑘=1
(Δ𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡)𝑖𝑖𝑖𝑖𝑖

� (2)

The Jacobian matrix H is used in a variational inversion algorithm to optimize the scaling factors for the best fit 
between modeled and observed aerosol extinctions (yo). The cost-function (J) is selected as:

𝐽𝐽 (𝑺𝑺) =
𝐸𝐸𝐸𝐸 −1

𝑓𝑓

2
(𝑺𝑺 − 𝑺𝑺𝑏𝑏)

𝑇𝑇
𝐁𝐁

−1 (𝑺𝑺 − 𝑺𝑺𝑏𝑏) +
1

2

(

𝒚𝒚𝒐𝒐 −𝐻𝐻 ⋅ 𝑺𝑺
)𝑇𝑇
𝐑𝐑

−1
(

𝒚𝒚𝑜𝑜 −𝐻𝐻 ⋅ 𝑺𝑺
)� (3)

which is different than the logarithm cost function used in Saide et al. (2015). Here, S represents the vector of 
scaling factors, yo is the observation vector of smoke aerosol extinction enhancements, R is the observation 
uncertainties, and B is the background uncertainties. A variational optimization (L-BFGS-B) algorithm (Saide 
et al., 2015; Zhu et al., 1997) is used to optimize the emission scaling factors of all the tracers, to achieve the best 
match to the observed smoke aerosol extinction by simultaneously accounting for error-weighted information 
from the a priori smoke emissions and observations.

The cost function can be viewed as two terms as J1 + E * J2, which represent the differences between optimized 
scaling factors and initial guesses, and between modeled and observed extinction enhancements, respectively. E 
is a regularization parameter commonly used to balance the two terms of the cost function (Henze et al., 2009; 
Saide et al., 2015; Zhang et al., 2015). We used the L-curve method to set the E value (Hansen, 1998; Saide 
et al., 2015), which plots J1 vs. J2 against different E values, and choose the best value as the one maximizing 
the local curvature (Figure S6 in Supporting Information S1). The E values chosen here are 100 (25 July 2019, 
Shady), 200 (29 July 2019, Tucker), 10 (3 August 2019, Williams Flats), and 20 (7 August 2019, Williams Flats), 
respectively. Wf is a constant defined as Wf = Nf/Nobs, which is the number of tracers being optimized divided by 
the total number of observations.
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The observation uncertainty R is considered as a diagonal matrix, that is, no correlation between observation 
errors, and all the observation records have the same uncertainty, similar as used in Saide et al.  (2015). B is 
computed by assuming an exponential decay by time:

𝐵𝐵 = 𝑒𝑒
−

Δ𝑡𝑡

𝐿𝐿𝑡𝑡� (4)

where Δt is the time difference between tracers, and Lt is the correlation length scale of 4 hr, selected by sensi-
tivity tests to refine the inversion performance. The temporal correlation in the scaling factor errors help generate 
smoother results. Another option of using correlation between vertical levels are also tested, which does not show 
significant difference compared to the temporal correlations.

The method used in this work has advantages of not requiring an adjoint of the full-chemistry model, and there-
fore is cost-effective. It also allows for consideration of the 3-D meteorology for the smoke transport, compared 
to the inversions with the transport described by Lagrangian models. The atmospheric transport depicted by 
the forward model plays an important role in the inversions. Accurate knowledge of meteorological condition 
is critical to interpreting and attributing the observed smoke aerosol signals to the upwind fire source correctly. 
However, given that one of the premises of inverse modeling is that errors are random (Brasseur & Jacob, 2017), 
the modeled smoke plume which is biased in location compared to observation can not be corrected by the inver-
sions effectively, which turns out to be a particular issue when spatial shifts are present in the modeled smoke 
plume due to the transport model errors, for example, for the Shady fire (Section 3.1). In order to deal with this 
limitation and considering that the cross-plume integrated smoke signal is less affected by the spatial displace-
ment, two methods with respect to observables are tested, that is, (a) assimilating individual smoke EXT532 
profiles and (b) assimilating accumulated smoke EXT532 profiles along the transverse flight transect legs, along 
with individual profiles for overpassing flight transects (Section 3.1).

3.  Results
3.1.  Inversion Tests for Assimilated Observable

The initial experiment attempts to assimilate individual smoke EXT532 profiles, while an issue of underes-
timated PBL smoke enhancements is present owing to the plume location displacements. Figure 3 shows the 
example inversion results for the Shady fire, assimilating a subset of the selected flight transect (22:20–23:24 
UTC 25 July 2019). Although the method works properly on constraining the vertical extent of injected emis-
sions, as is evidenced by the largely improved smoke aerosol extinction distribution compared to that driven by 
the first-guess emissions (Figure 3), the observed smoke within the PBL is not well captured by the analysis. For 
example, the strong PBL extinction enhancements existing around 23:00 UTC remains lower than the lidar meas-
urements after the inversion (Figures 3a and 3c). This discrepancy is caused by the mismatched plume locations 
between the model and DIAL-HSRL measurements with the former shifted slightly to the south (Figure S7 in 
Supporting Information S1). The spatial offset is more obvious within than above the PBL (Figures S7c–S7f in 
Supporting Information S1), suggesting that it is mostly attributed to transport errors in the lower troposphere.

In comparison with using individual profiles, assimilating transect-accumulated extinction profiles for the trans-
verse flight transect legs yields better performance (Figures 3d and 3e), as the accumulated signal is less biased 
due to the spatial plume shifts. The accumulation is implemented only for the flight transect segments crossing 
the plume at each sampling level (e.g., the transect segments labeled with numbers of 9–16 in Figure 3a), while 
for the data sampled along the plume in longitudinal direction, we use the profiles as they are. This method is 
used in the following inversions for all the fire cases. The time ranges of lidar observations being assimilated are 
listed in Table 1.

We evaluate the inversion results by comparing between the model performance with the base emissions (the 
Base run) and with lidar data constrained emissions (the Analysis run) regarding the assimilated observable, 
that is, the transect-accumulated extinction (Table 2 and Figure S8 in Supporting Information S1). The distri-
butions of smoke EXT532 profiles from lidar observations and simulations of the Base and Analysis runs are 
included in the supplement (Figures S9–S12 in Supporting Information S1). Overall, the Analysis runs show 
better agreement with the observed smoke extinctions, as suggested by the improved model skill statistics of the 
correlation coefficient (r), MB, and root-mean-square error. The remaining discrepancies can be largely attrib-
uted to the errors of transport modeling, residual background extinctions that are not fully removed by subtracting 
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a background profile, and limited tracer vertical resolution which preclude the inversion to recognize emission 
vertical distribution with high vertical precision, because of the grouping of model layers for generating the trac-
ers considering acceptable computational cost.

3.2.  Constrained Smoke Emissions and Free-Troposphere Smoke Injection Fraction ( f>PBL)

The vertical distributions of smoke CO emissions estimated by the Base run and constrained using lidar data 
are shown in Figure 4. For the Base run, 50% of column total emissions are allocated at the lowest model layer, 
as shown with the concentrated emissions at the surface, and the other half of smoke are evenly distributed at 
higher levels between the modeled lower and upper limits of plume injection height. Therefore, when the model 
estimated plume injection height bounds are mostly above the PBL, the vertical distribution yields a fraction of 

Figure 3.  Curtain plots of smoke aerosol extinction enhancement at 532 nm for the Shady fire on 25 July 2019 from 22:20 to 23:24 UTC. (a) Differential Absorption 
and High Spectral Resolution Lidar high spectral resolution lidar (DIAL-HSRL) observations; (b) simulated with first guess emissions; (c) simulation result of the Base 
run; (d) constrained with individual extinction profiles; (e) constrained with accumulated extinction profiles. The numbers labeled on panel (a) stand for flight transect 
segments between aircraft turns.

Fire name Sampling date (local time) N

r MB RMSE

Base Analysis Base Analysis Base Analysis

Shady 25 July 64,122 0.46 0.73 −67.34 −2.58 834.16 638.18

Tucker 29 July 15,698 0.64 0.89 −168.18 −84.74 846.02 541.93

Williams Flats 3 August 28,985 0.77 0.86 −238.95 −37.94 1,274.49 962.93

7 August 37,233 0.59 0.84 −252.89 −55.01 1,223.13 810.07

Note. The metrics shown here are the total number of points (N), correlation coefficient (r), mean bias (MB), and root-mean-
square error (RMSE).

Table 2 
Model Performance Statistics for the Base Run and the Analysis Run (With Constrained Emissions) Regarding the 
Assimilated Observable, That Is, the Cross-Transect Accumulated Smoke Aerosol Extinction
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free-troposphere smoke injections (f>PBL) around 0.5 (Figure 4), for example, for Shady and Williams Flats fires, 
with the means ranging from 0.44 to 0.52 (Table 1) during the hours of interest. Note that we exclude the first 
and last 2 hr in the period interest for the results of f>PBL due to insufficient constraints over the entire emission 
profile (see Text S1 in Supporting Information S1). The temporal variability in f>PBL for the Base run is mainly 
due to the relative position between the modeled PBL height and the estimated lower bound of the injection 
height. Noticeably, for Tucker fire, the f>PBL is much lower, with the mean of 0.12 and more discernible variability 
(Table 1). The low injection fraction is related to the major fuel of grasslands, for which the lower injection limit 
is defined at the third model layer (see Section 2.2) and the lower limit of fire heat release is not implemented 
in the plume rise scheme. Therefore, the injected emissions are always assigned at some levels within the PBL 
(Figure 4), resulting in f>PBL lower than 0.5.

By contrast, the constrained smoke emissions overall suggest obviously weaker emissions within the PBL with-
out a concentrated layer at the surface, and more intense emissions exist above the PBL (Figure 4). The mean 
f>PBL ranges from 0.80 to 0.94 (Table 1), much higher than for the Base run. In particular, for Tucker fire, the 
inversely estimated vertical emission allocation shows significant contrast below and above the PBL, rather than 
evenly distributing by the Base run, which implies the necessity of applying a lower limit of the fire heat flux to 
identify the lower limit of injection height for grasslands more realistically.

As discrepancies have been reported in different BB emission inventories (Carter et al., 2020; Kaiser et al., 2012), 
and uncertainties exist in the horizontal and temporal variations of smoke emissions due to limitations of satel-
lite detection, one may wonder the impacts of prior emissions on the inversion results. We examine the effect of 
spatial and temporal distributions of the prior emissions by a sensitivity test implemented for Williams Flats fire 
on 7 August (Figure S13 in Supporting Information S1). Using QFED data processed by the “fire_emiss” tool and 
the redistributed emissions as described in Section 2.2.1, and with the same daily total emission magnitude, we 
obtain similar free-troposphere injection fractions (0.96 ± 0.06 vs. 0.94 ± 0.09). Thus, the spatial and temporal 

Figure 4.  Relative biomass burning CO emission density (units: hr −1 km −1) for the Base run with plume rise determined by the Freitas scheme (top row) and for the 
Analysis run constrained using inversion (middle row). The black lines in emission density plots are the modeled planetary boundary layer (PBL) height derived at 
the fire location, and the black dots are daytime well-mixed PBL height diagnosed using Differential Absorption and High Spectral Resolution Lidar high spectral 
resolution lidar (DIAL-HSRL) backscatter profiles sampled in the upwind areas of the fire sources. The dashed lines are adjusted PBL height based on the relative bias 
of modeled PBL height. Adjustment is made for 11:00–18:00 PDT (UTC-7). Note that the adjustment for Tucker fire is unavailable due to the lack of observations. 
Hourly fractions of emissions injected above the PBL (f>PBL) (bottom row) are shown for the first guess emissions (FG), Base run (Freitas), Analysis (ANA), and 
Analysis with adjusted PBL heights, respectively. The gray shading area indicates the period of DIAL-HSRL observations being assimilated.
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distributions of prior emissions are not expected to significantly impact the 
results. Additionally, the FRP-based inventories for Williams Flats fire differ 
from each other by a factor up to about 1.5 (Stockwell et al., 2022), which is 
much smaller than the spread of emission scaling factors retrieved from the 
inversion at different tracer layers (about 0–10, Figure S14 in Supporting 
Information S1). Therefore, we expect that using other emission inventories 
would not have strong influences on the inversion results.

The above f>PBL values are based on modeled diagnosed PBL heights by 
the turbulence kinetic energy threshold using the Mellor-Yamada-Janjic 
scheme for PBL physics (Janjić,  2001). However, the errors in modeled 
thermodynamic structure and PBL heights can contribute to uncertainties 
in the inversely estimated injection fraction. In the recent study for all fire 
events sampled by FIREX-AQ in the western U.S. (Thapa et al., 2022), the 
underestimated PBL heights are found to be one of the key reasons of the 
more frequent free-troposphere injection cases modeled by WRF-Chem than 
observed. Taking the errors in modeled PBL heights into consideration, we 
examine the adjusted injection fractions (f>PBL,adj) by using the corrected PBL 
heights based on DIAL-HSRL data. The lidar backscatter profiles are used 
to identify the mixed layer heights in the daytime (e.g., Scarino et al., 2014; 
Tucker et  al., 2009), since vertical aerosol gradients can indicate the level 
below which the aerosols emitted within the PBL tend to be well mixed. 

As the aerosols can remain in the residual layer, the identification of PBL heights is not appropriate for other 
conditions. Thus, the corrections of PBL heights are only implemented for 11:00–18:00 PDT (UTC-7). We also 
note that the adjustment for Tucker fire is unavailable, because the lidar observation time was late and could not 
represent the mixed layer height.

The PBL heights derived from lidar data are shown as the black dots in Figure 4, using the backscatter profiles 
during the daytime, located upwind to the fire sources within 25 km. Overall, the model has underestimated PBL 
heights. We re-calculate the fractions (f>PBL,adj) using the adjusted PBL heights, based on the relative biases in 
percentage compared to the observed mixed layer heights. The f>PBL and f>PBL,adj are summarized in Figure 5 and 
Table 1. The f>PBL,adj ranges between 0.72–0.8, showing slight decreases than using the modeled PBL heights, 
but still much higher than for the Base run (Table 1). The largest difference is found for Shady fire with the 
mean injection fraction reducing from 0.87 to 0.72, because that a discernible proportion of emissions above the 
modeled PBL are re-allocated within the PBL after the correction (Figure 4). Considering that the meteorological 
conditions are not corrected in accordance with the PBL heights, the actual f>PBL would be slightly higher than 
the f>PBL,adj, because the observed free-troposphere smoke will be attributed to emissions at higher levels if the 
model got the atmospheric stratification correctly. Thus, the adjusted fractions confirm the inversion results of 
the higher smoke injection fractions above the PBL.

The inversion results suggest that the smoke emissions are likely incorrectly allocated by the model for large 
and intense fire events showing injections into the free troposphere. In consequence, the loading of lofted smoke 
above the PBL and its contribution to air quality and radiation may be underestimated, and the surface smoke 
impacts may be overestimated. This issue has been reported by a multi-model intercomparison on smoke fore-
casts for the Williams Flats fire, with some models presenting skillful results when evaluated against satellite 
AOD, but overpredicting surface PM2.5 concentrations over the fresh plume affected areas (Ye et al., 2021). The 
inversely estimated f>PBL values for these fire events show consistency with a recent CALIOP-based study that 
reports 78% of smoke detrained above the PBL (Soja et al., 2021). Therefore, improved estimation of the vertical 
emissions allocation, in particular, the fraction of smoke injected above the PBL, by ingesting vertical resolving 
information of smoke loading is recommended. However, because of the temporal and spatial coverage of the 
flight observations and availability for specifically designed wildfire observation missions, the information on 
vertical smoke aerosol distributions we can get from airborne lidar data is limited and not sufficient to constrain 
emissions for a longer period, especially for intense fire events featuring nighttime activity (e.g., the Williams 
Flats fire, see Section 3.3). Jointly assimilating airborne lidar observations and other data from multiple plat-
forms, for example, spaceborne lidar profiles, surface species, and satellite AOD retrievals can be expected to 
provide more observational constraints on the complete emission profiles.

Figure 5.  Box-whisker plot of the free-troposphere smoke injection fractions 
(f>PBL) estimated by the Freitas scheme, constrained by the inversions (ANA), 
and from ANA with adjusted planetary boundary layer (PBL) heights 
considering model errors. The edges and center line of each box stand for 
the 25th, 75th percentiles and the median, respectively. The lower and upper 
whiskers extend to the minimum and maximum, and the circle stands for the 
average. The triangle represents the value calculated for integrated smoke 
emissions during the period of interest.
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3.3.  Impacts on Transported Smoke Distributions

Impacts of the constrained emissions on simulated downwind smoke distribution and air quality are examined 
with a focus on one-day-old, transported smoke plumes. This evaluation provides an independent verification of 
the inversion results as the observations involved here are not incorporated into the inverse modeling system. Due 
to data availability, the comparison is performed only for the Tucker and Williams Flats fires.

Transported smoke from the Tucker fire was sampled on 30 July by the flight campaign. As shown in Figures 6e–6g, 
the constrained emissions yield better representation of the vertical smoke distribution along the flight track 
compared to the Base run, with enhanced extinction located above the PBL, corresponding to the elevated frac-
tion of f>PBL after the inversion. The smoke AOD enhancement (sAOD) maps present the location of the smoke 
plume (Figures 6b–6d). The sAOD values are derived by subtracting the background, which is represented by the 
average of the lowest 20% values over the whole map (Ye et al., 2021) for observations and 15% for modeling 
results. The smaller cutoff percentage is chosen for model to avoid excluding too much data at the borders of 
smoke plumes, as the background AOD is biased low than observed. The simulation with constrained emissions 
shows a band of plume with sAOD >0.15 extending over the north of Idaho towards Montana (Figure 6d), and 
it is slightly shifted to the south and narrower compared to the MODIS observations (Figure 6b). The modeled 
hourly AOD and wind fields (not shown) also confirm that this band of lofted smoke originates from Tucker fire. 
We note that although the simulation with constrained emissions shows partly improved spatial pattern of sAOD, 
it still does not replicate the regional sAOD distribution observed by MODIS MAIAC data. This is partly due to 
the misrepresented aerosol inflow from outside of the domain, that is, the smoke from the Siberia fires as shown 
on the northwest corner of Figure 6b, because the model used aerosol boundary conditions from monthly clima-
tology. Moreover, the limited temporal coverage of lidar sampling has prevented the inversion from constraining 
the emissions before and after the period of interest, especially for the nighttime fire emissions. Third, there are 
other fires remaining unconstrained and underestimated by the QFED data, for instance the fire plume from the 
southwest of Oregon. Additionally, as aerosol chemistry is not included in this modeling, the secondary produc-
tion of aerosols is not considered. Therefore, some of the observed AOD enhancements being not captured are 
likely associated with secondary aerosols from smoke and anthropogenic air pollutants. Regional improvements 
of the sAOD distributions would be more critically dependent on assimilations of satellite and surface chemical 
species observations over larger spatial and temporal coverages and proper boundary smoke conditions.

Besides the aerosol extinction profiles that directly measure vertical aerosol distributions, the ratio between 
surface PM2.5 and AOD (PM2.5/AOD) can also be used to as a useful indicator, given that a smoke plume injected 
higher into the free troposphere tends to have enhanced AOD but low surface PM2.5 over downwind area, leading 
to small PM2.5/AOD ratio and vice versa (Cheeseman et al., 2020; Ye et al., 2021). The PM2.5/AOD has been 
reported to generally decrease with increasing ratio of plume height vs. PBL height (Cheeseman et al., 2020), 
indicating the linkage between surface-level and total-column aerosols and plume injection behavior during wild-
fire events. Therefore, the PM2.5/AOD values help recognize surface smoke and lofted smoke. As shown by the 
modeled maps in Figure S15 in Supporting Information S1, the regions impacted by the lofted smoke plume 
from the Tucker fire are overall discernible with the lower PM2.5/AOD, in contrast to the surrounding areas. In 
addition, the Analysis run shows smaller ratios over the region with sAOD >0.15 than the Base run (Figure S15 
in Supporting Information S1 and Figure 6d), associated with the larger proportion of smoke being injected above 
the PBL with inversion on the previous day.

For specific surface sites, the temporal evolution of PM2.5, AOD, and their ratio are examined using observations 
at an AERONET station (Rimrock) and a nearby surface monitoring location (with the distance of 8.65 km). 
Although the modeled results show biases due to using climatological aerosol concentrations as boundary condi-
tions, as well as the unconstrained emissions owing to the reasons noted previously, the temporal variations of the 
surface PM2.5 and AOD are better captured by the Analysis (Figure 6h). We estimate the model biases according 
to the average model-observation difference for the hours out of the impact of smoke (AOD bias = −0.08 and 
PM2.5 bias = −5.0 μg m −3). The bias-corrected modeled PM2.5/AOD ratio presents better agreements with the 
observations (Figure 6i), suggesting the improved representation of the lofted smoke plume from Tucker fire 
above the PBL. This is mostly associated with the increased AOD of the Analysis, contributed by the enlarged 
fraction of smoke getting injected above the PBL based on the inversion. However, owing to the limited temporal 
and spatial coverage of the flight observations, the improvement on the ratio is shown to cover only about 3–4 hr. 
The peak of AERONET AOD is wider (Figure 6h), and the observed PM2.5 to AOD ratio remains low for a longer 
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Figure 6.  Comparison of modeled smoke from the Tucker fire against observations. Panel (a) shows the map of DC-8 flight track at 21:20–22:43 UTC, 30 July 2019, 
and the selected transect is color coded by sampling time (UTC), overlayed on top of the EOS-Aqua MODIS visible image obtained from NASA Worldview (https://
worldview.earthdata.nasa.gov/). Observed smoke AOD enhancement by MODIS MAIAC data (b) and the modeled results of the (c) Base and (d) Analysis runs at 
21 UTC July 30 with wind vectors at 4 km above sea level are shown for the same region. The background AOD has been subtracted. The black line shows the flight 
transect, the black triangle is the Tucker fire location, the white circle and the nearly overlapped magenta square denote the AERONET site Rimrock and the surface air 
quality monitoring site nearby. Panels (e–g) show extinction distribution by time and height observed by lidar and simulated by the Base and Analysis runs, respectively, 
along the colored flight track in (a). The black line shows the flight height. Panels (h and i) compare the observed and modeled results at Rimrock, including time 
series of AOD (black dots: AERONET; black dotted and dashed lines: modeled), surface PM2.5 (red dots: observation; red dotted and dashed lines: modeled), and their 
ratio (PM2.5/AOD). Note that the PM2.5 from Base and Analysis runs are nearly overlapped. The modeled PM2.5 and AOD in calculation of their ratios have been bias 
corrected for the time period shown in panel (i) (see Section 3.3).

https://worldview.earthdata.nasa.gov/
https://worldview.earthdata.nasa.gov/
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time period than shown by the Analysis run. Thus, more observational constraints from multiple platforms are 
necessary to provide a longer temporal coverage of the constraints of fire emissions and AOD distributions on a 
regional scale.

Constrained emissions for the Williams Flats fire on 7 August contribute to increased loading of lofted smoke 
above the PBL on the following day, as suggested by the enlarged smoke AOD enhancement along a latitudinal 
band over the north of Montana (east of −114°E, Figures 7c and 7d), showing better representation of the trans-
ported smoke aerosols. The transported smoke plume band on the modeled map shows a slight displacement to 
the north compared to the satellite observations (Figure 7b), which can be due to the errors in modeled mete-
orology and the timing of free-troposphere injection. For the magnitude of smoke AOD, although the Analysis 
result is still smaller than observed, the relative loading of surface smoke and total column smoke is improved, 
given the decreased PM2.5/AOD ratio for the Analysis run over the band of transported smoke (Figure 7h). This is 
confirmed by using satellite AOD and surface PM2.5 observations at Cascade, Montana (shown with the red circle 

Figure 7.  Comparison of modeled smoke from the Williams Flats fire on 8 August 2019 against observations. (a) Map of the flight track, similar as Figure 6a but 
showing Aqua-MODIS visible map at around 21:00 UTC 8 August. Note that temporal offset exists between the flight sampling time and the satellite overpass; (b) 
Observed smoke aerosol optical depth (AOD) using MODIS MAIAC data; (c–d) Modeled smoke AOD from the Base and Analysis runs; (e–f) Modeled ratios (surface 
PM2.5/AOD) for the Base and Analysis runs, overlayed by the observed ratios (colored circles) derived from surface monitoring data and MODIS MAIAC AOD at 
the same hour of each panel; (g) difference of AOD between the Analysis and Base runs; (h) difference of PM2.5/AOD. The black triangle in (b–f) represents the fire 
location. The red circle in (e and f) denotes location of the surface monitor at Cascade, Montana.



Journal of Geophysical Research: Atmospheres

YE ET AL.

10.1029/2022JD036808

17 of 22

in Figures 7e and 7f). We select this site based on the availability of surface PM2.5 observations, and collocation 
with the transported smoke getting affected by the inversion of emissions. The modeled PM2.5/AOD is 78.3 for 
the Analysis run and 102.2 for the Base run, with the former being closer to observed result (17.2), while it is still 
overestimated due to the northward spatial displacement of the modeled plume leading to the thinner plume over 
the Cascade site than observed. Meanwhile, the issue of limited temporal coverage of observational constraints 
is also present, similar to the Tucker fire case. This can be seen from the discrepancies between modeled and 
observed sAOD distributions, especially the underestimated aerosol loading over northwest Montana, which is 
not improved by the inversion (Figures 7b and 7d) and largely related to the underestimated amount of injected 
smoke before and after the emission period getting constrained by the lidar data. We note that for this event the 
initial and boundary conditions from a larger domain are not expected to contribute much to the model perfor-
mance for sAOD (Ye et al., 2021).

The evaluation along flight transects on 8 August 2019 over the transported smoke from the Williams Flats fire 
(highlighted in Figure 7a) exhibits consistent results with the evaluation against satellite data. The comparison 
also shows an underrepresentation of the lofted smoke over the northwest Montana (see Figure S16 in Supporting 
Information S1, about 21:50–22:10 UTC). In addition, the mismatch of lofted smoke on Figure S16 in Supporting 
Information S1 at about 22:10–22:40 UTC corresponds to spatial shifts of the modeled smoke to the north. It's 
also noteworthy that, the lofted smoke plumes in model for both the Analysis and Base runs are lower than the 
lidar observations, and they are more clearly detached from the PBL (Figure S16 in Supporting Information S1). 
This is likely because of the underprediction of modeled PBL height and plume placement offset, therefore the 
flight track might be sampling through different portions of the plume for model and lidar data. Further investiga-
tions are needed to isolate the impacts from various relevant factors, including plume rise, transport, and aerosol 
processes, on the capability of modeling transported smoke distributions.

4.  Discussions
4.1.  Limitations

As the inversion method developed in this work relies on observations with capability of characterizing the full 
vertical distributions of smoke aerosol, this method is subject to limitations on scalability. Applying this approach 
by leveraging other measurements would be challenging, because intensive observations with good coverage 
through the plume is needed to make it work. Ground-based lidar could be a candidate if the site location is adja-
cent to fire source. However, the effectiveness of ingesting spaceborne LIDAR data would be doubted, due to the 
long revisit cycle and sparseness of cases capturing fresh smoke plumes.

We recognize that because of the sporadic nature of wildfire events, continuous or regular airborne lidar observa-
tions are limited by resources and the associated costs and therefore currently impractical. Nevertheless, inversion 
framework similar to the one demonstrated in this work is applicable for jointly assimilating observations from 
different platforms (e.g., satellite-observed AOD, ground-based lidar data), which could be capable of constrain-
ing fire emissions over a longer time period.

Relating the free-troposphere injection fraction to fire and atmospheric conditions are helpful for further param-
eterization and prediction purposes. A tentative analysis is conducted to look for possible linkages between the 
injection fraction and some possible explanatory parameters (see Text S2 in Supporting Information  S1 and 
Figure S17 in Supporting Information S1). However, as the number of cases is limited, it is not sufficient to make 
conclusive statements. In addition, the injected fraction may vary from fire to fire depending on many combustion 
and atmosphere situations. In this work, we have included all the fire cases that were sampled in FIREX-AQ and 
are suitable for applying the inversion method (Section 2.1). Given the complexity, additional field campaigns are 
needed to increase the data pool for statistics, and to provide better representativeness for various fire intensity/
size, fuels, and atmospheric conditions, thus lead to more objective findings on potential explanatory variables to 
predict the free-troposphere plume injection fraction.

4.2.  Implications for Plume Rise Parameterization in Regional Models

Despite the limited scalability, the inversely constrained emission allocation below and above the PBL can 
advise into the selection of parameters used in the plume rise model. In the default setting of the Freitas 
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scheme in WRF-Chem, as well as in most regional and global chemical transport models, the vertical allo-
cation of fire emission relies on a prescribed constant ratio and has yet to be objectively constrained using 
observations. In WRF-Chem, it is assumed that 50% of emissions are emitted at the lowest model level, and 
the other 50% are distributed evenly within the parameterized lower and upper limits of plume injection height. 
This assumption is applied for any fire conditions, regardless of fuel and fire intensity. In contrast, our results 
using airborne lidar observations suggest that the vertical distribution of fire emissions can be largely different 
than the arbitrary assumptions used previously. For the fire cases examined here, the fraction of smoke getting 
released above the PBL is greatly underestimated by the default Freitas scheme. This means that, for similar 
cases when the Freitas scheme correctly estimates the plume injection behavior (into the free troposphere), 
increased fraction of injected smoke to about 80% will be necessary. Meanwhile, a lower limit of fire heat flux 
needs to be implemented for the fuel of grassland to realistically represent the injection height and emission 
allocation.

However, it should also be noted that the Freitas scheme generally tends to overestimate the overall occurrence 
frequency of free-troposphere injections. Among all the western U.S. fires sampled in FIREX-AQ, there is 
a larger fraction of cases for which the Freitas scheme estimated the plume injection heights into free tropo-
sphere, but the lidar observations suggested plumes within the PBL, likely associated with the overestimated 
fire heat flux and underestimated PBL heights (Thapa et al., 2022). For those cases when the plume rise model 
mistakenly injects smoke above the PBL, solely increasing the fraction of emissions above the PBL would 
make the simulation results even worse, and improved representation of the plume injection heights are impor-
tant. Therefore, the enlarged free-troposphere injection fraction needs to be implemented together with other 
improvements, and it tends to be applicable for fire events if the observations undoubtedly detect smoke injec-
tions above the PBL.

5.  Conclusions
Observational constraints by airborne DIAL-HSRL aerosol extinction profiles are ingested into an inverse mode-
ling system to estimate the vertical allocations of fire smoke emissions associated with plume rise processes. 
Three fire events in the western U.S. are analyzed, which are comprehensively sampled during the FIREX-AQ 
field campaign and have notable features of plume injection above the PBL. Our results suggest that the Freitas 
plume rise scheme implemented in the WRF-Chem model is substantially underestimating the fraction of smoke 
species getting injected into the free troposphere with respect to the column total for the fire cases analyzed in 
this work. The fraction of free-troposphere smoke injection (f>PBL) ranges between 80% and 94%, which would 
become slightly lower (72%–85%) if we consider the underestimation of modeled PBL heights. The constrained 
emission profiles lead to improved model representations of the vertical allocation of downwind transported 
smoke plume, especially the relative loading of surface and total column smoke, as suggested by the evaluation 
against independent observations including the satellite AOD, surface in situ PM2.5, and airborne DIAL-HSRL 
data on the next day.

The results highlight that objectively constrained free-troposphere plume injection behavior is important for 
advancing the modeling and forecasts of wildfire smoke impacts. Based on the cases investigated here, an 
increased fraction of smoke released above the PBL of ∼80% is suggested for fire events with well detected 
free-tropospheric injection. Meanwhile, a lower limit of the fire combustion heat flux for the fuel type of grass-
land is suggested to be implemented to better represent the potential range of injection height. However, this 
increased f>PBL is not appropriate for any fire events. Given the tendency of the Freitas scheme to overpredict 
the occurrence frequency of free-tropospheric injection (Thapa et al., 2022), for the “false alarm” cases, simply 
increasing the fraction would worsen the simulation results. Therefore, the current recommendation for increased 
f>PBL is only suitable for well detected plume injections above the PBL. With respect to broader cases, it needs 
to be applied together with improved fire heat flux (Thapa et  al., 2022) and thermodynamic structure of the 
atmosphere.

Despite the improvements of vertical plume structures led to by the inversion, discrepancies between the simu-
lations and observations are still present in terms of the smoke AOD enhancement distributions, suggesting 
limited impacts of the revised emissions allocation on the smoke transport/dispersion on a regional scale. This 
is mainly due to the limited spatiotemporal coverage of airborne lidar data, background/boundary smoke condi-
tions, and other fires remaining misrepresented. Other reasons of the discrepancies could be the processes not 
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accounted for in the model, for example, the aging of smoke aerosols, downwind formation and transformation of 
secondary organic aerosols, and aerosol properties used to calculate extinction from aerosol mass concentration. 
Joint assimilation of multiple categories of observations from satellite and ground-based sensors are expected to 
provide more constraints on smoke distributions on regional scale.

Variability of free-troposphere smoke injection fractions among cases can be generally contributed by the burn-
ing features (e.g., fire intensity, combustion phase, fuel amount and structure, burned area and geometry) and 
atmospheric conditions (e.g., stability, wind speed, and moisture distribution). However, due to the limited 
sample size in this work, more broad statements on the relation between these possible controlling factors and 
the free-tropospheric injection fraction are not possible. Therefore, future airborne observations are required to 
examine the vertical smoke emission allocations over various situations. Extended investigations for more fire 
events based on existing and future field campaigns are warranted to explore the explanatory parameters of the 
free-tropospheric injection behavior and improve predictive potential.

Data Availability Statement
DIAL-HSRL data and Fuel2Fire total carbon emissions and satellite fire detections during the FIREX-AQ 
mission are archived by NASA/LARC/SD/ASDC (https://doi.org/10.5067/SUBORBITAL/FIREXAQ2019/
DATA001, https://www-air.larc.nasa.gov/missions/firex-aq/). QFED data are available at the NASA NCCS data 
portal (https://portal.nccs.nasa.gov/datashare/iesa/aerosol/emissions/QFED/v2.5r1/0.1/QFED/). AERONET 
AOD observations can be accessed on the AERONET website (https://aeronet.gsfc.nasa.gov/). MODIS MAIAC 
AOD data (MCD19A2 Version 6) are available online (https://lpdaac.usgs.gov/products/mcd19a2v006/). Surface 
PM2.5 observations are available at OpenAQ (https://openaq.org) and U.S. EPA's Air Data (https://www.epa.gov/
outdoor-air-quality-data). WRF-Chem is an open-source community model, and the source code of WRF-Chem 
v3.6.1 is available at http://www2.mmm.ucar.edu/wrf/users/download/get_source.html.
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